
 DEVOIR 1 – CORRECTION (Programmation Orientée Objet)

EXERCICE 1 : LA POO EN QUELQUES QUESTIONS

1) On définit la classe Identite de la manière suivante :

a) Quels sont les attributs et méthodes de cette classe ?

Attributs : nom, prenom, an
Méthodes	: age et	la	méthode	spéciale __init__

Qu´affichera la console à la suite de l´exécution des instructions suivantes ?

b) >> Pires Maria

c) >> Pires 1999

d) >> 16

2) Écrire le code de la classe Voiture qui permet d´afficher 'Ferrari Rouge' après avoir saisi les
instructions suivantes :

EXERCICE 2: BRIOCHES

class Stock:
 def __init__(self):
 self.qt_farine = 0
 self.qt_beurre = 0
 self.nb_oeufs = 0	

Commentaire	:	Le	constructeur	initialise	les	attributs	du	stock	à	0.	Chaque	objet	possède	ses	propres	
quantités.	

1. Méthode d’ajout
	

 def ajouter_beurre(self, qt):
 self.qt_beurre += qt	
	

2. Méthodes d’affichage

 def afficher(self):
 print("farine :", self.qt_farine)
 print("beurre :", self.qt_beurre)
 print("oeufs :", self.nb_oeufs)	

Commentaires	:	Chaque	méthode	d’ajout	modifie	un	seul	attribut.	La	méthode	afficher	permet	de	
consulter	l’état	du	stock.	

3. Méthode stock_suffisant_brioche(self)
 def stock_suffisant_brioche(self):
 return (self.qt_farine >= 350 and
 self.qt_beurre >= 175 and
 self.nb_oeufs >= 4)	

Commentaire	:	La	méthode	renvoie	True	si	le	stock	permet	de	fabriquer	une	brioche.	

4. Méthode produire(self)

 def produire(self):
 res = 0
 while self.stock_suffisant_brioche():
 self.qt_farine -= 350
 self.qt_beurre -= 175
 self.nb_oeufs -= 4
 res += 1
 return res	

Commentaire	:	La	boucle	while	se	répète	tant	qu’il	reste	assez	d’ingrédients.	Chaque	tour	retire	les	
quantités	nécessaires	pour	une	brioche.	

	

a) Il	affichera	2,	le	nombre	de	brioches	produites.	
b) Résultat	:		

	
							farine	:	300	
							beurre	:	650	
							œufs	:	2	

	

	

5. Fonction nb_brioches(liste_stocks)

def nb_brioches(liste_stocks):
 total = 0
 for s in liste_stocks:
 total += s.produire()
 return total	

Commentaire	:	La	fonction	parcourt	chaque	stock	et	additionne	le	nombre	de	brioches	produites.	

	

	

