DEVOIR 1 — CORRECTION (Programmation Orientée Objet)

EXERCICE 1 : LA POO EN QUELQUES QUESTIONS

1) On définit la classe [[dentite| de la maniére suivante :

1 class Identite:
def __init__(self, nom, prenom, an):
self.nom=nom
self.prenom=prenom
self.an=an
def age(self, a):
return a-self.an

Nowvhs WN

a) Quels sont les attributs et méthodes de cette classe ?

Attributs : nom, prenom, an
Méthodes: age etlaméthode spéciale init

Qu’affichera la console a la suite de 1’exécution des instructions suivantes ?
b) >> Pires Maria
¢) >> Pires 1999

d) >> 16

2) Ecrire le code de la classe qui permet d’afficher 'Ferrari Rouge' aprés avoir saisi les
instructions suivantes :

class Voiture:
def __init__ (self, nom, couleur):
self.nom=nom
self.couleur=couleur
def __repr__(self):
return self.nom +' '+ self.couleur

EXERCICE 2: BRIOCHES

class Stock:
def init (self):
self.qt farine
self.qgt beurre
self.nb oceufs = 0

([
o o

Commentaire : Le constructeur initialise les attributs du stock a 0. Chaque objet posséde ses propres
quantités.

1. Méthode d’ajout

def ajouter beurre(self, qgt):
self.qt beurre += gt

2. Méthodes d’affichage

def afficher(self):

print ("farine :", self.gt farine)
print ("beurre :", self.gt beurre)
print ("oeufs :", self.nb oeufs)

Commentaires : Chaque méthode d’ajout modifie un seul attribut. La méthode afficher permet de
consulter I'état du stock.

3. Méthode stock_suffisant_brioche(self)
def stock suffisant brioche (self):
return (self.qgt farine >= 350 and
self.qt beurre >= 175 and
self.nb oceufs >= 4)

Commentaire : La méthode renvoie True si le stock permet de fabriquer une brioche.

4. Méthode produire(self)

def produire (self):
res = 0
while self.stock suffisant brioche():

self.qt farine -= 350
self.qt beurre -= 175
self.nb oceufs -= 4
res +=1

return res

Commentaire : La boucle while se répete tant qu’il reste assez d’ingrédients. Chaque tour retire les
quantités nécessaires pour une brioche.

a) Il affichera 2, le nombre de brioches produites.
b) Résultat:

farine : 300
beurre : 650
ceufs: 2

5. Fonction nb_brioches(liste_stocks)

def nb brioches(liste stocks):
total = 0

for s in liste stocks:

total += s.produire()
return total

Commentaire : La fonction parcourt chaque stock et additionne le nombre de brioches produites.

