Exercice 1

Indiquer tous les entiers que l'on peut représenter sur 4 bits puis compléter le tableau ci dessous

Mot binaire				Entier relatif
0	0	0	0	0
				1
				-2
1	1	1	1	-1

Exercice 2

Avec la méthode du complément à 2, indiquer la représentation de -8 sur 1 octet

Exercice 3

- a) Comme vu dans l'activité avec $(10,59375)_{10} = (1010,10011)_2$, encoder en base 2 $(4,125)_{10}$
- b) Calculer maintenant la représentation décimale de (100,0101)₂
- c) Encoder maintenant le nombre $(0,1)_{10}$ en base 2. Que remarquez vous ?
- d) Créer une fonction *partieDecimaleEnBinaire(valeur, bits)* qui retourne la liste des nombres de la partie décimale nommée *valeur* entre 0 et 1 en binaire sur un nombre *bits* de bits donnés.
- e) En utilisant la fonction *convert* des entiers positifs (vous pourrez la recopier ou l'importer...rappelez vous!!), créer une fonction *reelPositifEnBinaire(valeur, bits)* qui retourne une liste de deux listes contenant la valeur en binaire (partie entière puis décimale). Vérifiez alors vos résultats !

Exercice 4

Aide : retrouvez le bit s de signe ; le n de l'exposant (e=n-127) et la mantisse m (à laquelle il faudra ajouter le bit implicite)