Bac S 2013 Métropole Spécialité

EXERCICE III - COMMENT PROTÉGER LA COQUE D'UN BATEAU DE LA CORROSION ? (5 points)

La corrosion est un phénomène bien connu des marins. Les bateaux dont la coque est en acier en sont victimes et doivent en être protégés. Une méthode de protection consiste à poser à la surface de la coque des blocs de métal que l'on appelle « anodes sacrificielles ».

Image provenant du site www.hisse-et-oh.com

L'objectif de l'exercice est d'évaluer, à l'aide des documents ci-après, la masse de l'anode sacrificielle nécessaire à la protection d'un bateau.

Document 1. Le phénomène de corrosion

La corrosion d'un métal M est sa transformation à l'état de cation métallique M^{k+} par réaction avec le dioxygène dissous dans l'eau.

Le métal perd un ou plusieurs électrons, il est oxydé selon la demi-équation rédox :

Une mole de métal oxydé produit k moles d'électrons.

Document 2. Potentiels standard de différents métaux

Pour prévoir les réactions d'oxydoréduction, on peut s'appuyer en première approche sur l'échelle suivante, appelée échelle des potentiels standard. Tous les couples oxydant/réducteur peuvent être classés par leur potentiel standard.

Échelle des potentiels standard de quelques couples à 20°C :

Élément	Couple	Potentiel standard (V)
Plomb	Pb ²⁺ / Pb	-0,126
Étain	Sn ²⁺ / Sn	-0,138
Nickel	Ni ²⁺ / Ni	-0,257
Fer	Fe ²⁺ / Fe	-0,447
Zinc	Zn ²⁺ / Zn	-0,760
Aluminium	Al ³⁺ / Al	-1,67
Magnésium	Mg ²⁺ / Mg	-2,37

Lorsque deux métaux sont en contact et peuvent être oxydés par le dioxygène, c'est celui dont le couple a le potentiel standard le plus faible qui s'oxyde : il constitue l'anode et protège l'autre métal qui ne réagira pas.

Document 3. Protection d'un bateau avec coque en acier

Lors de l'oxydation de l'anode sacrificielle, il s'établit un courant de protection au niveau de la surface S de la coque immergée. Sa densité de courant moyenne, intensité de courant par unité de surface, vaut : $j = 0.1 \text{ A.m}^{-2}$.

Ce courant a son origine dans la charge électrique échangée lors de la réaction d'oxydo-réduction. L'intensité I d'un courant électrique peut s'exprimer en fonction de la charge électrique Q échangée au cours de la réaction pendant une durée Δt :

$$I = \frac{Q}{\Lambda t}$$

où, dans le système international, I s'exprime en ampère (A), Q en coulomb (C) et Δt en seconde (s).

Résolution de problème

Questions préalables

- Un bateau possède une coque en acier donc composée essentiellement de fer. Écrire la demiéguation de l'oxydation du fer métallique en considérant uniquement les couples du document 2.
- Citer en justifiant votre réponse, les métaux du tableau du document 2 susceptibles de protéger la coque en acier d'un bateau. Pourquoi l'anode utilisée est-elle qualifiée de « sacrificielle » ?

Problème

On désire protéger pendant une année la coque en acier d'un bateau par une anode sacrificielle en zinc. La surface de coque immergée dans l'eau de mer vaut $S = 40 \text{ m}^2$. Une anode sacrificielle sur une coque de bateau doit être remplacée quand elle a perdu 50 % de sa masse.

Quelle est la masse totale d'anode sacrificielle en zinc qu'on doit répartir sur la coque pour la protéger pendant une année ? Exercer un regard critique sur la valeur trouvée.

Données

- Masse molaire du zinc : $M = 65.4 \text{ g.mol}^{-1}$
- ➤ Une mole d'électrons possède une charge électrique $q = 9.65 \times 10^4$ C

Remarque:

L'analyse des données, la démarche suivie et l'analyse critique du résultat sont évaluées et nécessitent d'être correctement présentées.