
CORRECTION EXERCICES ACIDITE

4. p354 :

4. a. Les groupes carboxyle CO₂H et amine NH₂ ont des propriétés acido-basiques.

- **b.** Le p K_a du couple -CO₂H/-CO₂ vaut 2,3 ; celui du couple -NH₃ +NH₂ vaut 9,7.
- c. On trace les domaines de prédominance de l'acide et de la base de chaque couple puis on combine les deux diagrammes :

14. p358:

14. a.
$$HNO_2(aq) + H_2O(\ell) \implies NO_2^-(aq) + H_3O^+(aq)$$

b. On utilise la relation
$$K_{\rm a} \frac{\left[{\rm NO_2^-} \right] \times \left[{\rm H_3O^+} \right]}{\left[{\rm HNO_2} \right]}$$
.

D'après l'équation de la réaction précédente, la réaction produit autant d'ions NO_2^- que d'ions H_3O^+ donc dans la solution : $[NO_2^-] = [H_3O^+]$.

D'où:
$$K_{a} \frac{\left[H_{3}O^{+}\right]^{2}}{\left[HNO_{2}\right]}$$
.
A.N.: $K_{a} \frac{(3.1 \times 10^{-4})^{2}}{1.9 \times 10^{-4}} = 5.1 \times 10^{-4}$.
c. $pK_{a} = -\log K_{a}$.
A.N.: $pK_{a} = 3.3$.

15. p358:

15. a. Une solution tampon est une solution dont le pH varie peu suite à l'addition d'une quantité modéré d'acide ou de base ou suite à une dilution modérée.

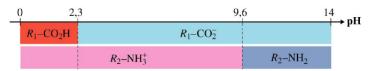
b. pH = p
$$K_a$$
 + log $\left[\frac{\left[\text{CH}_3\text{CO}_2^- \right]}{\left[\text{CH}_3\text{CO}_2\text{H} \right]} \right]$.

c. Le pH souhaité est supérieur au pK_a, ce qui correspond à une situation où la base est majoritaire. Il faut donc introduire dayantage de base.

22. p359:

- **22. a.** Couples : H_3A/H_2A^- ; H_2A^-/HA^{2-} ; H_2A^{2-}/A^{3-} (on obtient la formule de la base à partir de l'acide en retirant un atome d'hydrogène et en diminuant la charge d'une unité).
- b. L'espèce la plus acide H₂A est majoritaire en milieu très acide. Celle qui lui succède lorsque le pH augmente est sa base conjuguée, etc. D'où:

- courbe rouge : H₃A - courbe verte H₂A⁻ - courbe violette : HA²⁻ - courbe bleue : A³⁻

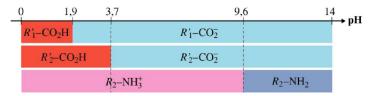

c. pH = p K_a + log $\begin{pmatrix} A^- \\ HA \end{pmatrix}$ en notant HA l'acide et A^- sa base conjuguée.

- **d.** Les concentrations sont égales lorsque le pH est égal au pK_a du couple.
- e. L'intersection des courbes, représentant les proportions d'un acide et de sa base conjuguée, correspond à l'égalité de leurs concentrations. L'abscisse de l'intersection des courbes donne donc le pK_a du couple considéré.

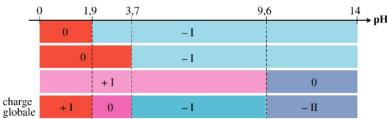
Couple	H_3A/H_2A^-	H_2A^-/HA^{2-}	HA^{2-}/A^{3-}
pK _a	3,1	4,8	6,4

29. p359 :

- 29. Voici les modifications apportées dans le manuel élève :
 - la « valine » remplace partout dans l'exercice la « proline » ; - $pKa_1 = 2,3$ et $pKa_2 = 9,6$.
- 1. a.



b. Dans l'intervalle [0 ; 2,3], le groupe carboxyle est neutre et le groupe amino possède une charge +*I*. L'acide aminé possède donc une charge globale +*I*.


Dans l'intervalle [2,3; 9,6], le groupe carboxyle possède une charge -I et le groupe amino possède une charge +I. L'acide aminé possède donc une charge globale -I+I=0.

Dans l'intervalle [9,6; 14], le groupe carboxyle possède une charge -*I* et le groupe amino est neutre. L'acide aminé possède donc une charge globale -*I*.

2. a.

b. Sur le diagramme ci-dessous on a remplacé les différentes formes par leur charge. Sur la dernière ligne on fait la somme des charges pour déterminer la charge globale de l'acide aspartique pour chacun des 4 intervalles de pH déterminés :

c. À un pH égal à 7,0 par exemple, la valine est neutre et l'acide aspartique présente une charge –I.